3.2867 \(\int \frac{(2+3 x)^{7/2}}{\sqrt{1-2 x} (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=160 \[ -\frac{942 \sqrt{\frac{3}{11}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )}{3125}-\frac{2 \sqrt{1-2 x} (3 x+2)^{5/2}}{55 \sqrt{5 x+3}}-\frac{69 \sqrt{1-2 x} \sqrt{5 x+3} (3 x+2)^{3/2}}{1375}-\frac{2577 \sqrt{1-2 x} \sqrt{5 x+3} \sqrt{3 x+2}}{6875}-\frac{61151 \sqrt{\frac{3}{11}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{6250} \]

[Out]

(-2*Sqrt[1 - 2*x]*(2 + 3*x)^(5/2))/(55*Sqrt[3 + 5*x]) - (2577*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/6875
- (69*Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/1375 - (61151*Sqrt[3/11]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1
- 2*x]], 35/33])/6250 - (942*Sqrt[3/11]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/3125

________________________________________________________________________________________

Rubi [A]  time = 0.052713, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {98, 154, 158, 113, 119} \[ -\frac{2 \sqrt{1-2 x} (3 x+2)^{5/2}}{55 \sqrt{5 x+3}}-\frac{69 \sqrt{1-2 x} \sqrt{5 x+3} (3 x+2)^{3/2}}{1375}-\frac{2577 \sqrt{1-2 x} \sqrt{5 x+3} \sqrt{3 x+2}}{6875}-\frac{942 \sqrt{\frac{3}{11}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{3125}-\frac{61151 \sqrt{\frac{3}{11}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{6250} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x)^(7/2)/(Sqrt[1 - 2*x]*(3 + 5*x)^(3/2)),x]

[Out]

(-2*Sqrt[1 - 2*x]*(2 + 3*x)^(5/2))/(55*Sqrt[3 + 5*x]) - (2577*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/6875
- (69*Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/1375 - (61151*Sqrt[3/11]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1
- 2*x]], 35/33])/6250 - (942*Sqrt[3/11]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/3125

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{(2+3 x)^{7/2}}{\sqrt{1-2 x} (3+5 x)^{3/2}} \, dx &=-\frac{2 \sqrt{1-2 x} (2+3 x)^{5/2}}{55 \sqrt{3+5 x}}-\frac{2}{55} \int \frac{\left (-\frac{81}{2}-\frac{69 x}{2}\right ) (2+3 x)^{3/2}}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{2 \sqrt{1-2 x} (2+3 x)^{5/2}}{55 \sqrt{3+5 x}}-\frac{69 \sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}}{1375}+\frac{2 \int \frac{\sqrt{2+3 x} \left (\frac{9825}{4}+\frac{7731 x}{2}\right )}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx}{1375}\\ &=-\frac{2 \sqrt{1-2 x} (2+3 x)^{5/2}}{55 \sqrt{3+5 x}}-\frac{2577 \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}}{6875}-\frac{69 \sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}}{1375}-\frac{2 \int \frac{-\frac{348867}{4}-\frac{550359 x}{4}}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx}{20625}\\ &=-\frac{2 \sqrt{1-2 x} (2+3 x)^{5/2}}{55 \sqrt{3+5 x}}-\frac{2577 \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}}{6875}-\frac{69 \sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}}{1375}+\frac{1413 \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx}{3125}+\frac{183453 \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx}{68750}\\ &=-\frac{2 \sqrt{1-2 x} (2+3 x)^{5/2}}{55 \sqrt{3+5 x}}-\frac{2577 \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}}{6875}-\frac{69 \sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}}{1375}-\frac{61151 \sqrt{\frac{3}{11}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{6250}-\frac{942 \sqrt{\frac{3}{11}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{3125}\\ \end{align*}

Mathematica [A]  time = 0.209013, size = 122, normalized size = 0.76 \[ \frac{61151 \sqrt{2} (5 x+3) E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )-5 \left (6013 \sqrt{2} (5 x+3) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )+2 \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3} \left (7425 x^2+22440 x+10801\right )\right )}{68750 (5 x+3)} \]

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x)^(7/2)/(Sqrt[1 - 2*x]*(3 + 5*x)^(3/2)),x]

[Out]

(61151*Sqrt[2]*(3 + 5*x)*EllipticE[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2] - 5*(2*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]
*Sqrt[3 + 5*x]*(10801 + 22440*x + 7425*x^2) + 6013*Sqrt[2]*(3 + 5*x)*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]
], -33/2]))/(68750*(3 + 5*x))

________________________________________________________________________________________

Maple [C]  time = 0.02, size = 145, normalized size = 0.9 \begin{align*}{\frac{1}{2062500\,{x}^{3}+1581250\,{x}^{2}-481250\,x-412500}\sqrt{1-2\,x}\sqrt{2+3\,x}\sqrt{3+5\,x} \left ( 30065\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -61151\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -445500\,{x}^{4}-1420650\,{x}^{3}-723960\,{x}^{2}+340790\,x+216020 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^(7/2)/(3+5*x)^(3/2)/(1-2*x)^(1/2),x)

[Out]

1/68750*(2+3*x)^(1/2)*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(30065*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*Ell
ipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-61151*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE
(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-445500*x^4-1420650*x^3-723960*x^2+340790*x+216020)/(30*x^3+23*x^2-7*x-6
)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (3 \, x + 2\right )}^{\frac{7}{2}}}{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{-2 \, x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(7/2)/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((3*x + 2)^(7/2)/((5*x + 3)^(3/2)*sqrt(-2*x + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (27 \, x^{3} + 54 \, x^{2} + 36 \, x + 8\right )} \sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{50 \, x^{3} + 35 \, x^{2} - 12 \, x - 9}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(7/2)/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

integral(-(27*x^3 + 54*x^2 + 36*x + 8)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(50*x^3 + 35*x^2 - 12*x - 9)
, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**(7/2)/(3+5*x)**(3/2)/(1-2*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (3 \, x + 2\right )}^{\frac{7}{2}}}{{\left (5 \, x + 3\right )}^{\frac{3}{2}} \sqrt{-2 \, x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(7/2)/(3+5*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

integrate((3*x + 2)^(7/2)/((5*x + 3)^(3/2)*sqrt(-2*x + 1)), x)